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Summary 

 
Increased levels of branched-chain amino acids (BCAA) associate with insulin resistance and 

type 2 diabetes (T2D), which could result from dietary habits, gut microbiome composition or 

altered cellular energy metabolism. We hypothesized that reduced dietary intake of BCAA 

improves whole body insulin sensitivity and hyperinsulinemia in patients with T2D.  

In a randomized, placebo-controlled, double-blinded cross over trial, 12 metabolically well-

controlled patients with T2D received an isocaloric diet (protein: 1 g/kg body weight), 

containing either the complete amino acid set (BCAA+) or a 60% reduced amount of BCAA 

(BCAA-) for one week each. Effects on glucose homeostasis were assessed from mixed meal 

tolerance tests (MMT) and hyperinsulinemic-euglycemic clamp tests (HEC), and pathways 

affecting insulin signaling were analyzed in skeletal muscle and adipose tissue biopsies. Gut 

microbiome composition was assessed by next generation sequencing. 

After the BCAA- diet, MMT-derived insulin secretion was 28% lower compared to the BCAA+ 

diet (p<0.05). After the BCAA- diet, MMT-derived insulin sensitivity (PREDIM, the validated 

predicted HEC-derived M-value from meal data) was 23% higher (p<0.01), whereas HEC-

derived insulin sensitivity (M-value) remained unchanged. Respiratory control ratio was 

unchanged in skeletal muscle, but 1.7-fold higher in adipose tissue (p<0.05). The mechanistic 

target of rapamycin (mTOR) was downregulated by 13% in adipose tissue (p<0.05). BCAA- 

diet was further associated with a 40% increase of fecal Bacteroidetes and a 11% decrease of 

Firmicutes (both p<0.05).  

In conclusion, a short-term dietary reduction of BCAA decreases insulin secretion and increases 

postprandial insulin sensitivity, which may relate to adipocyte mitochondrial efficiency and 

altered gut microbiome composition in patients with T2D. 
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Zusammenfassung  

 
Erhöhte Serumspiegel verzweigtkettiger Aminosäuren (BCAA: Valin, Leucin, Isoleucin) 

assoziieren mit Insulinresistenz und Typ-2-Diabetes (T2D), was aus den 

Ernährungsgewohnheiten, der Zusammensetzung des Darmmikrobioms oder Veränderung des 

zellulären Energiestoffwechsels resultieren könnte. Wir prüften die Hypothese, dass eine 

diätetische BCAA-Reduktion die Insulinsensitivität verbessert und die Hyperinsulinämie bei 

Patienten mit T2D vermindert. 

In einer randomisierten, Placebo-kontrollierten Crossover-Doppelblindstudie erhielten 12 

Patienten (8 männlich, 4 weiblich, 54±4 Jahre, BMI 30,8±2,8 kg/m2, HbA1c 6,6±0,9%/49±10 

mmol/mol) eine einwöchige Diät mit allen Aminosäuren (BCAA+) oder mit einem um 60%igen 

reduzierten Gehalt an BCAA (BCAA-). Die Glukosehomöostase wurde durch Mixed-Meal-

Toleranz-Tests (MMT) und hyperinsulinämisch-euglykämische Clamp-Tests (HEC) erfasst. In 

Muskel- und Fettgewebebiopsien wurde die Insulin-Signalübertragung mittels Western-Blots 

und die mitochondriale Effizienz mittels hochauflösender Respirometrie (Respiratory Control 

Ratio, RCR) bestimmt. Die Zusammensetzung des Darmmikrobioms wurde durch Next-

Generation-Sequenzierung ermittelt. 

Verglichen mit der BCAA+-Diät, bewirkte die BCAA--Diät eine Abnahme der BCAA-

Serumkonzentration um 17% (p<0,01). Die MMT-induzierte Insulinsekretion war 28% 

niedriger als bei der BCAA+-Diät (p<0,05). Die Insulinsensitivität stieg im MMT (PREDIM) 

um 23% (p<0,01), blieb aber im HEC (M-Wert) unverändert. Nach BCAA--Diät war die 

Respiratorische Kontrolle (RCR) im Skelettmuskel unverändert, im Fettgewebe jedoch 1,7-fach 

höher (p<0,05). Die Phosphorylierung des Mechanistic Target of Rapamycin (mTOR) war nur 

im Fettgewebe um 13% niedriger (p<0,05). Die BCAA--Diät führte desweitern zu einer 

Zunahme fäkaler Bacteroidetes um 40% und einer Abnahme der Firmicutes um 11% (beides 

p<0,05). 

Eine kurzfristige diätetische Reduktion verzweigtkettiger Aminosäuren senkt die 

Insulinsekretion und steigert die postprandiale Insulinsensitivität, die durch verbesserte 

mitochondriale Effizienz des Fettgewebes und veränderte Zusammensetzung des 

Darmmikrobioms bedingt sein könnte. 
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1. Introduction 
 

The growing diabetes epidemic is one of the major global health problems caused by population 

growth and ageing [1]. It resembles a paramount high-cost biomedical challenge for the 

industrialized world and places a tremendous financial burden on society for the patient care 

and treatment. Furthermore, the constant rise of obesity and T2D-associated co-morbidities 

such as hyperlipidemia, cardiovascular disease, kidney disease and non-alcoholic fatty liver 

disease (NAFLD) demonstrate the urgent necessity to identify and ultimately target the 

molecular mechanisms underlying their onset, manifestation and progression, to combat this 

epidemic using a holistic approach.  

 

1.1. Type 2 diabetes mellitus 
 

Worldwide, 425 million people have diabetes with more than 58 million in Europe and T2D 

cases are projected to rise between 10.7 million (+54%) and 12.3 million (+77%) in the total 

adult population in Germany by 2040 [2]. Globally, 1 out of 11 have diabetes and the number 

has quadrupled over the past three decades with diabetes mellitus being the ninth major cause 

of death [3]. Major driving factors of the global T2D epidemic are overweight and obesity, 

sedentary lifestyle and increased consumption of unhealthy diets. Progressive and effective 

strategies to prevent gestational diabetes mellitus and its manifestation in children and young 

adults are urgently needed. Of note, prevalence of childhood obesity in many countries is 

rising leading to increased numbers of T2D already in pediatric populations which results in 

complications in early adulthood [4]. Considering its increasing prevalence, childhood T2D 

may become a threatening public health problem [3].  

 

T2D is defined by chronic hyperglycemia and characterized by inadequate beta-cell function 

and insulin resistance of insulin-sensitive target tissues such as skeletal muscle, adipose tissue 

and liver. The initial defect is most likely insulin resistance with subsequent compensatory 

increase of pancreatic insulin secretion, which at some point declines and hyperglycemia starts. 

According to the American Diabetes Association (ADA) diabetes is diagnosed as follows [5]: 
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Table 1: Criteria for diagnosis of diabetes according to the American Diabetes Association  

Diagnostic criteria  Diabetes mellitus   

Fasting plasma glucose*  ≥126 mg/dl (7.0 mmol/l) 

or 

HbA1c** ≥ 6.5 % (48 mmol/mol) 

or 

Symptoms of hyperglycemia 
and a random plasma 
glucose***   

≥ 200 mg/dl (11.1 mmol/l)  

or 

2-h plasma glucose during an 
OGTT**** 

≥ 200 mg/dl (11.1 mmol/l)  

 

* Fasting is defined as no caloric intake for at last 8 hours.  

** The test should be performed in a laboratory using a method that is certified by the NGSP 

(National Glycohemoglobin Standardization Program) and standardized by the assay according 

to DCCT (Diabetes Control and Complications Trial). 

*** The classic symptoms of hyperglycemia are defined as polyuria, polydipsia and 

unexplained weight loss.  

**** The test should be performed as described by the World Health Organization, using a 

glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.  

 

The onset of diabetes mellitus often occurs years before the actual diagnosis. Globally, 45.8% 

(or 174.8 million cases) of all adult diabetes cases were estimated to be undiagnosed [6]. 

People with undiagnosed and untreated diabetes mellitus are at a greater risk of complications 

compared to those receiving treatment. The state of pre-diabetes with only slightly elevated 

blood glucose levels (i.e. impaired fasting glucose (IFG) and/or impaired glucose tolerance 

(IGT)) may also precede T2D for years [7]. Furthermore, the development of diabetes in pre-

diabetic individuals can be prevented or delayed by lifestyle intervention actually by dietary 

changes and increased physical activity [8].  

Moreover, expenditure for medical needs of patients with diabetes mellitus is up to three times 

greater than for the general population without diabetes mellitus [9] and increasing costs 
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should be spent on prevention programs and raising awareness. An increase in the number of 

adults with diabetes by 20% in developed and 69% in developing countries has been predicted 

to occur between 2010 and 2030 [10]. This comprises not only a social, but also an economic 

burden, since increasing prevalence is closely related to rising direct and indirect healthcare 

costs, with cardiovascular complications, diabetes duration and insulin therapy correlating 

positively with increased costs [11]. 

 

1.2. Pathophysiology and major risk factors 
 

When the feedback loops between insulin action and insulin secretion do not function 

properly, the insulin action on insulin-target tissues like skeletal muscle, adipose tissue and 

liver as well as beta-cell insulin secretion are affected, which leads to abnormally high blood 

glucose levels [12] [Figure 1]. In addition, beta-cell dysfunction results in reduced insulin 

release, which is insufficient to maintain normal glucose levels [13, 14]. Insulin resistance is 

due to alterations in interorgan communication by multiple metabolites serving as mediators. 

Some key players such as amino acids (AA), ketoacids and lipids regulate insulin sensitivity 

in skeletal muscle, liver and adipose tissue of humans [15]. Previous studies suggest that the 

differences in insulin sensitivity observed between the individuals with prediabetes and those 

with overt diabetes can be attributed at least in part to differences in obesity and abdominal 

fat [16]. Nevertheless, most but not all patients with T2D are overweight. Differences in 

insulin sensitivity between groups were largely explained by distinctions in overall and 

particularly abdominal visceral obesity indicative of a linkage between abdominal fat depots 

and glucose regulation in the fasting state, potentially mediated by adipokines. Since skeletal 

muscle is responsible for 70-80% of insulin-stimulated glucose uptake and adipose tissue for 

just 5-10% [17], it is skeletal muscle insulin resistance that is considered the critical 

pathological component of T2D and metabolic syndrome [18]. Initially, dysfunction of white 

adipose tissue and circulating metabolites modulate tissue communication and insulin signaling 

[19]. A normal protective response of the cell to excess nutrients under physiological 

conditions may be the acute insulin resistance as a strategy to prevent glucotoxicity or 

oxidative stress [20] and preserve glucose for tissues critically depending on this metabolite 

such as the brain [19]. Insulin signaling returns back to normal as soon as nutrient levels 

restore to normal. Chronic nutrient excess seems to cause less easily reversible changes that 

prevent normal glucose uptake, leading to hyperinsulinemia and hyperglycemia and at the 

same time to glucose deprivation in the tissue. More harmful changes such as oxidative stress, 
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inflammation, vascular/endothelial dysfunction could occur as secondary outcomes [21].  

Over the past decades, advanced epidemiological research on the causes of T2D have clarified 

the interrelationship between the variety of risk factors for T2D development. They can be 

categorized in modifiable and non-modifiable. The most prominent non-modifiable are age 

and ethnicity [22]. Although genetic factors identify those at particularly high risk, 

epidemiological studies reveal that T2D can be prevented with lifestyle improvements [23]. 
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Figure 1. Fasting hyperglycemia in T2D. Beta-cells in the pancreas produce insulin, which 

reduces glucose output in the liver, supresses fatty acid release and increases glucose uptake by 

adipose tissue and skeletal muscle under physiological conditions. With beta-cell function 

impairment and progressive insulin resistance of liver, skeletal muscle or adipose tissue, 

excessive amount of glucose remains in circulation leading to hyperglycemia and increased 

circulating fatty acids. 
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1.2.1. Non-modifiable risk factors 
 

The most important non-modifiable risk factor is age, with prevalence of T2D rising with age 

up to 8th decade among men and women [22]. Furthermore, genetic predisposition is another 

key non-modifiable risk factor, which plays an important role in the T2D and metabolic 

syndrome development [14]. The heterogeneous nature of T2D suggests that the focus should 

be predominantly placed on phenotypically homogenous subgroups of patients [24] as recently 

suggested [25]. Genetic factors play a major role in determining an individual’s position along 

the population distribution of adiposity [26]. Thus, there are cases of T2D which can be 

prevented by maintaining normal body weight and leading a healthy lifestyle, but also some 

which are more difficult to respond or that remain insusceptible to change (non responders) 

[27]. Some studies provided compelling evidence for a genetic component in T2D [28] which 

might be the explanation for the non-responders’ reactions [29]. Genome wide association 

studies have identified the polygenic nature of T2D [30]. Different ethnic groups as Hispanic 

and Asian Indians were proven to be at higher risk compared to Caucasians [31]. Females who 

had gestational diabetes defined as glucose intolerance with onset or first recognition during 

pregnancy and their infants are at a sevenfold higher risk for developing T2D later on [32, 33]. 

In utero exposure to maternal hyperglycemia is a strong risk factor for cardiometabolic diseases 

[34] due to diminished beta-cell function [31]. For instance, rates of T2D were dramatically 

increased over time in Pima Indian infant population in which incidence of gestational diabetes 

is very high [35]. Gestational diabetes is defined as any degree of impaired glucose tolerance 

with onset or first recognition during pregnancy [36]. It affects about 3-5% of all pregnancies 

[36]. Women with polycystic ovary syndrome (PCOS) comprise 10% of women in reproductive 

age and most of them are characterized by increased insulin resistance and impaired beta-cell 

function compared to age- and BMI-matched controls [37]. Around 30% of women with PCOS 

have an IGT and show accelerated progression to T2D, whereas 10% are already diagnosed 

with a T2D [37].  

 

1.2.2. Modifiable risk factors 

Cigarette smoking is a well-known risk factor in many metabolic diseases including a 45% 

higher risk of the development of T2D [38] but also passive exposure to smoking has also been 

associated with progression of insulin resistance [39]. Of note, smoking status was positively 
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associated with abdominal obesity in patients with T2D [40]. People who smoke are more often 

central obese and more hyperinsulinemic than nonsmokers [41]. They tend to be relatively 

insulin resistant and dyslipidemic, with evidence of endothelial dysfunction and at a higher risk 

for cardiovascular diseases compared to nonsmokers.  

Over the past decades the role of alcohol in the etiology of T2D has been extensively discussed, 

as it has become one of the most prevalent lifestyle habits. There is growing consensus that 

moderate alcohol consumption is associated with a lower risk of T2D. The 20-year follow up 

Finnish twin study revealed that moderate alcohol consumption (5–29.9 g/day for men and 5–

19.9 g/day for women) resulted in a reduced incidence of T2D compared to low consumption 

(<5 g/day) [42]. However, despite the positive association found between moderate alcohol 

consumption and insulin sensitivity [43], the message to the public should be cautiously 

communicated in the light of socioeconomic burden of binge drinking, chronic consumption or 

alcohol dependence and NAFLD. In a population-based prospective study, alcohol 

consumption was proven to strongly increase the risk of T2D by increasing insulin resistance, 

the most prominent in males with high genetic risk score for diabetes, [44]. This highlights the 

importance of refraining from excessive alcohol intake when making recommendations for 

healthy lifestyle habits to prevent diabetes 

A further modifiable risk factor for T2D is therapy with drugs, such as glucocorticoids, 

antihypertensives (β-blockers, thiazide diuretics), immunosuppressive, atypical antipsychotic 

agents and drugs used for HIV-infection [45]. Finally, psychosocial stress and depression are 

also associated with an increased risk of T2D development by up to 37% [46].  

Last but not least, physical activity plays a major role in the management of insulin resistance, 

prediabetes, gestational diabetes mellitus, T2D, and diabetes-related comorbidities and 

complications [47]. Regular exercise improves acute insulin action and helps to treat 

hyperglycemia, hyperlipidemia, hypertension, cardiovascular risk, quality of life and decreases 

mortality [48]. Both aerobic and resistance training have independently preventive effects on 

T2D development [49]. Higher levels of physical activity are associated with lower risk of T2D 

development. A program consisting of increased physical activity and moderate weight loss 

could decrease the risk of T2D development by about 60% [50]. The effect of exercise on 

lowering diabetes risk is explained by beneficial acute and chronic effects on insulin action and 

skeletal muscle insulin sensitivity and can be achieved by either aerobic or resistance training 

interventions [51]. Increased physical activity also provides additional effects on circulating 

lipids, blood pressure and mortality [50].  
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 Overweight and obesity 
The prevalence of T2D is increasing in parallel with the rising obesity incidence in 

industrialized countries [52]. In accordance, a previous study revealed that sustained weight 

loss resulted in sustained remission of T2D [53]. Elevated BMI (BMI≥25 kg/m2) as a marker 

of overweight and adiposity, is the single most powerful risk factor for T2D [23]. In addition, 

waist-hip ratio predicts T2D risk independently of BMI [54] proving the importance of body 

fat distribution and visceral fat accumulation. In clinical practice, it is therefore important to 

monitor both BMI and waist circumference. Interestingly, visceral adiposity might be another 

link between obesity and insulin resistance [55]. Adiposity in childhood and young adulthood 

is associated with significantly higher risk of chronic diseases and T2D, which gradually 

occur in younger ages [56]. Understanding the T2D pathophysiology in youth, as well as 

evaluating the risk of complications and the psychosocial impact will enable the development 

of future research, treatment, and prevention approaches [57]. Furthermore, the positive 

correlation of beta-cell dysfunction with the severity of metabolic syndrome highlights the need 

to better understand the different stages of beta-cell dysfunction in the development of 

metabolic syndrome on the way to progress to T2D [58]. 

To refer to the binary epidemics of obesity and diabetes mellitus, we need to acknowledge the 

fundamental causes of both diseases with a focus on unhealthy diet and sedentary lifestyle.  

It is estimated that 90% of T2D patients are obese, however only 20-25% of obese individuals 

develop a T2D. More important is the localization of obesity, with central obesity being tightly 

associated with insulin resistance, T2D and cardiovascular risk [59]. Waist circumference 

provides a measure for central adiposity with cut-off points ranging according to ethnicity. In 

this context, we should refer to the metabolic syndrome, as an important risk factor for 

cardiovascular events, T2D and all-cause mortality [60]. According to the current IDF 

definition, an individual suffers from the metabolic syndrome, if it suffers from central obesity 

(defined by waist circumference) and has 2 more of the following factors:  

 

• Triglycerides (TGs) ≥150 mg /dl (1.7 mmol/l) or treatment for this lipid abnormality 

• High-density lipoprotein cholesterol (HDL) < 40 mg/dl (1.03 mmol/l) in males 

                                                                 or < 50 mg/dl (1.29 mmol/l) in females,  

                                                                 or treatment for this lipid abnormality 

• Systolic blood pressure ≥ 130 mm Hg or diastolic blood pressure ≥ 85 mm Hg, or 

treatment for previously diagnosed hypertension 

• Dysglycemia defined as fasting blood glucose ≥ 100 mg/dl (5.6 mmol/l) or T2D.  
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According to these criteria, the metabolic syndrome is not only a cluster of risk factors for the 

development of T2D, but an important component of the disease itself. Obesity is mainly the 

result of increased food intake and decreased physical activity, although genetic predisposition 

is also involved in its development. As far as diet is concerned, foods rich in saturated fats, red 

and processed meat, as well as sugar-sweetened beverages are associated with increased 

diabetes risk, whereas a high intake of vegetables, coffee and fiber-rich foods decreases the risk 

of diabetes development and is associated with improved glycemic control in patients with 

established T2D [61, 62]. NAFLD also closely associates with obesity, and has been called the 

liver manifestation of the metabolic syndrome [63], cardiovascular disease, T2D and its 

complications [64]. 

 

1.2.3. Diet and lifestyle factors 
 

At a global level, the T2D epidemic has been also interpreted a result of urbanization and 

environmental transition, including work pattern transformations from largely or exclusively 

physical work to predominantly sedentary occupations, growing cybernation and 

mechanization, and automated transportation [61]. Increased processed food consumption and 

nutrition transition is another driving force in international obesity in overweight [65]. Dietary 

intake of high-caloric high-fat diets and sedentary lifestyle lead to increased storage of 

triglycerides not only in adipose tissue but also ectopically in other tissues [66]. Intracellular 

lipid contents in skeletal muscle and liver have been related to insulin resistance and 

inflammatory processes. Furthermore, diets characterized by high glycemic index or high 

glycemic loads are associated with increased risk for T2D [67]. Milestone clinical trials such as 

the Diabetes Prevention Program (DPP) and the Finnish Diabetes Prevention Study (DPS) 

showed that lifestyle interventions including increased physical activity and adopting a healthy 

diet prevent or delay the development of T2D [8, 68]. Nevertheless, if lifestyle changes are not 

successful, pharmacological treatment such as metformin which still represents the first-choice 

drug in T2D, shall be introduced. The DPP compared the effectiveness between lifestyle 

intervention and metformin in preventing the onset of T2D. The lifestyle intervention involved 

a low-calorie, low-fat diet and a moderate physical activity for at least 150 min per week for 

patients at high risk for the development of T2D with mean age of 51 years and mean body 

mass index (BMI) of 34 kg/m2 in order to achieve and maintain a weight reduction of 7% [68]. 

This study reported a reduction of T2D risk by 58% and 31% in the lifestyle intervention and 



10 
 

metformin groups, respectively and although it was not primarily designed to reduce weight, it 

delivered a solid evidence that weight reduction is the dominant predictor for reduced T2D risk. 

The T2D onset can be delayed by at least 4 years by reducing body weight by 4-7% and 

sustaining the reduction. It is however of particular interest to set the ‘turning point’ for insulin 

resistance to be reversed by lifestyle intervention only. From the Look Ahead trial an evidence 

was provided that a weight loss of 7-8.6% for one year is clinically significant and improves 

insulin sensitivity [69]. However, it was recently demonstrated that ~7% of body weight within 

a short period of time (2 weeks), does not translate into immediate improvement of muscle 

insulin resistance [70]. The burning question is at what point and maintained for what duration 

a multifactorial lifestyle intervention modifying obesity, physical inactivity, smoking, blood 

pressure and dyslipidemia is insufficient to preserve the beta-cell in the progression of the 

metabolic disorder. A holistic approach is needed to address the deteriorating beta-cell function, 

therefore it should be indirectly targeted through managing pre-diabetes and impaired fasting 

glucose as well as impaired glucose tolerance, in particular. Self-management education and 

patient-centered care are the cornerstones of T2D management in addition to lifestyle strategies 

with individualization of glycemic goals [71]. Individuals with T2D and their families usually 

share a common lifestyle that, not only predisposes the non-T2D members to developing 

metabolic disorder, but also increases their collective risk for cardiovascular disease. The 

collective nutritional behaviour of patients and their families should be assessed to make the 

adoption of a healthy lifestyle easily conceivable. Diabetes requires lifelong adjustments to 

lifestyle and pharmacotherapy; thus, in order to achieve glycaemic and other therapeutic targets, 

active participation and commitment of the individual is essential. These provide also expected 

short-term benefits [69] such as improved well-being that increases self-efficiency and personal 

motivation. Long-term benefits include late onset in the ones without diabetes [72] as well as 

reduction of microvascular complications development risk and improvement of quality of life 

in the ones with manifested T2D. Lifestyle interventions are cost-effective and delaying the 

onset of diabetes as proven for a duration over 10 years, from a payer perspective, compared 

with placebo. Investment in lifestyle for diabetes prevention in high-risk adults provides good 

value for the money spent [73]. The difficulty of implementing lifestyle interventions though is 

the challenge to apply them to real-life settings [71]. However, in contrast to any 

pharmacotherapy, in which side effects occur, such as weight gain, hypoglycemia, 

gastrointestinal discomfort, and fluid retention lifestyle interventions and change in nutrition 

are universal. Poor adherence may thus limit the effectiveness of this strategy and the key health 

achievements in people with T2D. 
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The focus on a “healthy” diet has been identified as a cornerstone of researchers and 

policymakers to prevent the onset of T2D. A rising interest has emerged on positive effects of 

vegetarian and vegan diets on the prevention of chronic conditions including obesity and 

cardiovascular diseases. Previous works reveal that plant-based diets, especially when rich in 

high-quality plant foods not including sweetened food and beverages, are associated with 

substantially lower risk of developing T2D [74]. Alongside overall diet quality, a few dietary 

highlights such as Mediterranean, low glycemic index, moderately low carbohydrate, and 

vegetarian diets can be adapted to personal and cultural food preferences and appropriate calorie 

needs to control body weight and to prevent and manage overt diabetes [61]. On the other hand, 

calorie restriction independent of the intake of fiber, coffee or meat failed to improve beta-cell 

function [22]. However, this might be due to the fact that dietary effects on reversing reduced 

beta-cell function are limited at the background of chronic prevalent insulin resistance 

characterized by hyperinsulinemia and hyperglycemia. This is why the necessity of adopting a 

healthy diet early on even before the diagnosis of T2D is essential. Dietary recommendations 

typically promote diets rich in fruits, vegetables, nuts, whole grains and low in refined grains, 

red or processed meat [61]. The quality of dietary fats and carbohydrates consumed is more 

crucial than the quantity of these macronutrients and changing the macronutrient composition 

of the diet while keeping the total number of calories constant is an intriguing alternative that 

may be more sustainable. An overview of different kinds of diets on glycemic control is given 

in Table 2. 

Of note, acute dietary fat intake initiates alterations in energy metabolism and increases skeletal 

muscle insulin resistance in healthy adults [75]. In accordance, a low-fat vegan diet improves 

glycemic control and blood lipids in T2D compared to a diet based on American Diabetes 

Association (ADA) guidelines [76]. The difference between animal and plant fat on the risk of 

T2D has been discussed intensively with an emphasis on the levels of triglycerides, 

phospholipids and cholesterol. Recent studies indicated no association between total fat intake 

and risk of T2D, but origins of different fatty acids seem to play a role with a positive influence 

of plant-derived fatty acids on lowering the risk for T2D [77]. Of note, quality of dietary fat 

was proven to play an important role in comorbidities of T2D as higher intake of 

polyunsaturated fatty acids (PUFAs) reduces total mortality and cardiovascular disease 

mortality [78].  

Also, the protein source is of importance. T2D risk is associated with higher red and processed 

meat consumption [79]. Furthermore, high total and animal protein intake was associated with 

a modest elevated risk of T2D [80]. Protein restricted diets have been shown to significantly 
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improve the longevity of animals [81, 82]. Epidemiological studies in humans suggest that high 

protein intake associates with increased mortality, whereas lower protein intake is associated 

with decreased mortality [83]. Individuals on high protein diets are more likely to develop 

metabolic diseases such as T2D and obesity [84].  

Taken together, dietary behaviour and choice of nutrients are most often personal and it is more 

realistic for a dietary alteration to be individualized rather than to be applied as a universal 

approach. Identification of dietary patterns is important for glycemic management and 

management of insulin resistance in patients with T2D. 

 



13
 

  Ta
bl

e 
2 

R
an

do
m

iz
ed

 c
on

tro
lle

d 
nu

tri
tio

na
l 

in
te

rv
en

tio
ns

 o
n 

gl
yc

em
ic

 c
on

tro
l 

in
 a

du
lt 

pa
tie

nt
s 

w
ith

 T
2D

 w
ith

 d
ur

at
io

n 
6 

m
 -

 1
 y

 a
nd

 c
le

ar
ly

 d
ef

in
ed

 

m
ac

ro
nu

tri
en

t c
om

po
si

tio
n 

R
ef

. 
Pa

rti
ci

pa
nt

s/
co

nd
iti

on
s 

D
ie

t 
C

ar
bs

 
Pr

ot
ei

n 
 

Fa
t 

D
ur

at
io

n 
IS

 T
es

t 
O

ut
co

m
es

 

[8
6]

 
se

ve
re

ly
 o

be
se

 N
=5

1,
 

39
%

 
w

ith
 T

2D
 

lo
w

 c
ar

b 
 

 co
n 

 

37
%

  
 51

%
   

 

22
%

 
 16

%
 

41
%

 
 33

%
 

6 
m

 
IS

I  
↓ 

B
W

, ↓
 T

G
, ↓

 H
bA

1C
, ↓

 F
PG

, 
IS

 n
.d

. i
n 

T2
D

, ↑
 IS

 in
 n

on
-T

2D
 

af
te

r l
ow

 c
ar

b 
di

et
 

[8
7]

 
ob

es
e 

N
=1

09
, 8

3%
 w

ith
 T

2D
  

lo
w

 c
ar

b 
 

 co
n 

 

12
0 

g 
 23

0 
g 

73
 g

 
 74

 g
 

93
 g

 
 69

 g
 

1 
y 

Q
U

IC
K

I 
in

de
x 

~ 
B

W
, ↓

 T
G

, ↓
 H

bA
1C

, ↑
 H

D
L,

 
↑ 

IS
 in

 T
2D

 a
fte

r l
ow

 c
ar

b 
di

et
  

[8
8]

 
ob

es
e 

N
=5

0 
w

ith
 T

2D
 

lo
w

 c
ar

b 
 

13
%

 
28

%
 

59
%

 
6 

m
 

n.
d.

 
↓ 

B
W

, ↓
 H

bA
1C

, ↑
 H

D
L 

[8
9]

 
N

=1
56

 w
ith

 T
2D

 
lo

w
 c

ar
b 

 
40

%
 

20
%

 
40

%
 

1 
y 

n.
d.

 
~ 

B
W

, ~
 H

bA
1C

 
[9

0]
 

N
=1

27
 w

ith
 T

2D
 

lo
w

 c
ar

b 
 

co
n 

di
et

   
45

%
 

57
%

 
18

%
 

16
%

 
33

%
 

26
%

 
1 

y 
n.

d.
 

↓ 
B

W
, ↓

 H
bA

1C
, ↓

 L
D

L 

[9
1]

 
N

=1
05

 w
ith

 T
2D

 
lo

w
 c

ar
b 

co
n 

di
et

  
20

-2
5 

g 
 

 
 25

%
 

1 
y 

n.
d.

 
↑ 

H
D

L 

[9
2]

 
ov

er
w

ei
gh

t N
=4

5 
w

ith
 T

2D
 

lo
w

 c
ar

b 
 

lo
w

 fa
t  

50
-6

0 
g 

19
0 

g 
50

-5
5 

g 
73

-8
0 

g 
50

-6
0 

g 
35

-4
0 

g 
1 

y 
n.

d.
 

↔
 

[9
3]

 
ob

es
e 

N
=7

7 
w

ith
 T

2D
 

lo
w

 c
ar

b 
 

co
n 

di
et

 
35

 g
 

40
 g

 
20

 g
 

23
 g

 
40

 g
 

34
 g

 
1 

y 
 

↔
 

[9
4]

 
ov

er
w

ei
gh

t N
=7

4 
w

ith
 T

2D
 

ve
ge

ta
ria

n 
 

co
n 

di
et

   
60

%
 

50
%

 
15

%
 

20
%

 
25

%
 

<3
0%

 
6 

m
o 

H
EC

 
↓ 

B
W

, 
↑ 

IS
 

in
 

T2
D

 
af

te
r 

ve
ge

ta
ria

n 
di

et
 

[9
5]

 
po

st
m

en
op

au
sa

l 
w

om
en

 
N

=2
45

 w
ith

 T
2D

 
m

ed
ite

rr
an

ea
n 

di
et

 v
s c

on
 

 
 

 
6 

m
o 

n.
d.

 
↓ 

H
bA

1C
, ↓

 B
M

I 

[9
6]

 
hi

gh
-r

is
k 

ca
rd

io
va

sc
ul

ar
 

pa
tie

nt
s N

=8
19

 w
ith

 T
2D

 
m

ed
ite

rr
an

ea
n 

di
et

 +
 o

liv
e o

il 
vs

  
m

ed
ite

rr
an

ea
n 

 
 

 
1 

y 
n.

d.
 

↓ 
TG

 in
 th

e 
+ 

nu
ts

 g
ro

up
 

  



14
 

 

di
et

 +
 n

ut
s 

 
[9

7]
 

ov
er

w
ei

gh
t 

w
om

en
 

N
=2

15
 

w
ith

 T
2D

 
m

ed
ite

rra
ne

an
  

lo
w

 in
 re

d 
m

ea
t  

co
n 

lo
w

 i
n 

re
d 

m
ea

t 

<5
0%

 
 

<3
0%

 
1 

y 
n.

d.
 

re
du

ct
io

n 
of

 o
ra

l 
an

tid
ia

be
tic

 

dr
ug

s  

[9
8]

 
ov

er
w

ei
gh

t 
ad

ul
ts

 
N

=1
18

 
w

ith
 T

2D
 

m
ed

ite
rr

an
ea

n 
 

co
n 

di
et

 
50

-5
5%

 
60

-7
0%

 
15

-2
0%

 
15

-2
0%

 
30

%
 

<7
%

 
1 

y 
n.

d.
 

↓ 
TG

 

[9
9]

 
ob

es
e 

N
=3

8 
w

ith
 T

2D
 

hi
gh

-p
ro

te
in

  
lo

w
-p

ro
te

in
  

40
%

 
55

%
 

30
%

+2
1 

g 
 

15
%

+7
 g

 
30

%
 

30
%

 
1 

y 
n.

d.
 

↔
 

[1
00

] 
ov

er
w

ei
gh

t/o
be

se
 N

=9
9 

w
ith

 
T2

D
  

hi
gh

-p
ro

te
in

  
co

n 
di

et
  

45
%

 
48

%
 

26
.5

%
 

19
%

 
31

%
 

32
%

 
1 

y 
n.

d.
 

↔
 

[1
01

] 
ov

er
w

ei
gh

t/o
be

se
 N

=9
5 

w
ith

 
T2

D
 

hi
gh

-p
ro

te
in

  
co

n 
di

et
 

54
%

 
46

%
 

15
%

 
15

%
 

28
%

 
38

%
 

1 
y 

n.
d.

 
↔

 

[1
02

] 
ov

er
w

ei
gh

t/o
be

se
 N

=2
27

 
w

ith
 T

2D
 

lo
w

 c
ar

b 
lo

w
 fa

t  
co

n 
di

et
 

45
%

 
60

%
 

55
%

 

25
%

 
20

%
 

30
%

 

30
%

 
20

%
 

15
%

 

1 
y 

 
↓ 

H
bA

1C
, ↓

 F
PG

, ↓
 B

W
 in

 a
ll 

gr
ou

ps
 

[1
03

] 
ob

es
e 

N
=1

15
 

lo
w

 c
ar

b,
 h

ig
h-

un
sa

tu
ra

te
d 

fa
t 

hi
gh

 
ca

rb
 

lo
w

-
sa

tu
ra

te
d 

fa
t 

14
%

 
 53

%
 

28
%

 
 17

%
 

58
 

 30
%

 

13
 m

 
n.

d.
 

↓ 
H

bA
1C

, ↓
 F

PG
, ↓

 B
W

 in
 a

ll 
gr

ou
ps

 

 B
W

, b
od

y 
w

ei
gh

t; 
TG

, t
rig

ly
ce

rid
es

; c
on

, c
on

tro
l; 

ca
rb

, c
ar

bo
hy

dr
at

es
; H

EC
, h

yp
er

in
su

lin
em

ic
 e

ug
ly

ce
m

ic
 c

la
m

p 
te

st
; F

PG
, f

re
e 

pl
as

m
a 

gl
uc

os
e;

 H
D

L,
 h

ig
h 

de
ns

ity
 li

po
pr

ot
ei

n;
 

LD
L,

 l
ow

 d
en

si
ty

 l
ip

op
ro

te
in

; 
ca

rb
, 

ca
rb

oh
yd

ra
te

; 
IS

, 
in

su
lin

 s
en

si
tiv

ity
; 

m
, 

m
on

th
s;

 y
, 

ye
ar

s;
 n

.d
., 

no
t 

do
ne

; 
Q

U
IC

K
I, 

qu
an

tit
at

iv
e 

in
su

lin
 s

en
si

tiv
ity

 c
he

ck
 i

nd
ex

; 
PU

FA
, 

po
ly

un
sa

tu
ra

te
d 

fa
tty

 a
ci

ds
. 

 



15 
 

 

1.3. Branched-chain amino acids (BCAA) 
 

Among the proteinogenic AA, there are the three AA, valine, leucine and isoleucine, which 

have aliphatic chains with a branch in the end and therefore named BCAA [Figure 2]. These 

BCAA are also termed essential, as they cannot be synthesized by the human body and must be 

obtained from food sources. Nutrients with highest content of BCAA are meat, fish and dairy 

products. The BCAA content of mixed protein sources is approximately 20% [106]. In addition 

to building proteins, their numerous metabolic functions have been investigated [107]. Valine, 

leucine and isoleucine play important metabolic roles – enhance and promote protein synthesis, 

signaling pathways and glucose metabolism, activate a nutrient-sensitive, mTOR-mediated 

metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity through 

phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin 

(PI3K/AKT/mTOR) signal pathway [108]. A large proportion of BCAA from dietary sources is 

absorbed from the intestines, bypasses the liver, reaches to the peripheral tissues [109] and is 

predominantly metabolized by skeletal muscle. Of the three BCAA, leucine is primarily 

responsible for the stimulation of protein synthesis which is mediated through the upregulation 

of mRNA translation [110]. BCAA further play physiologic roles in the immune system and 

brain function. In the brain they play a role in synthesis of proteins and neurotransmitters [111]. 

Under stress conditions such as surgery, trauma and starvation or during severe diseases such 

as fever, infections, liver cirrhosis, the requirement of BCAA is higher compared to that of other 

AA [112].  

 

 
Figure 2. Branched-chain amino acids: valine, leucine and isoleucine. 

 

BCAA are known for several health-promoting effects. They have been shown to enhance 

muscle protein synthesis and to be beneficial for patients with hepatic encephalopathy [113]. 
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Drinking water supplemented with leucine resulted in doubled leucine plasma levels in high fat 

diet fed mice, leading to improvement of glucose homeostasis and higher insulin sensitivity, 

and an amelioration of hepatic steatosis and in adipose tissue inflammation without affecting 

food intake and weight gain [114]. Despite the effect of relieving hepatic encephalopathy 

symptoms, there is no evidence for improved mortality or overall quality of life.  

 

1.3.1. Acquired BCAA deficiency 

Undernutrition is common among aged individuals, due to multiple reasons that include 

reduced appetite and food intake, impaired nutrient absorption and other age-related medical, 

psychological and social changes. Particularly, protein-energy undernutrition leading to BCAA 

deficiency is associated with reduced strength, decreased bone mass, immune dysfunction, 

anemia, impaired cognitive function, long wound healing, delayed recovering from surgery and 

higher hospitalization rate and is a strong independent predictor of mortality in elderly people 

[115]. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, 

cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic AA such as tyrosine, 

tryptophan and phenylalanine, as well as methionine-are increased in these conditions.  

 

In contrast to the potential health-promoting BCAA effects under conditions of negative energy 

balance, chronic increased BCAA levels are observed in obesity-associated conditions as T2D, 

insulin resistance and cardiovascular conditions. BCAA have gained additional importance with 

the arising promising predictive role of metabolomics for the development of T2D and other 

cardiometabolic diseases [116]. In addition, BCAA are clearly a biomarker of cardiometabolic 

disease phenotypes [116]. In cardiomyocytes, glucose suppresses BCAA catabolism by 

inhibiting the expression of the Kruppel-like factor 15 (KLF15) [117]. In result, BCAA 

accumulate and subsequently activate the mechanistic target of rapamycin (mTORC1) to 

enhance protein synthesis and cardiac hypertrophy as shown in animal studies. Defect of BCAA 

degradation promotes heart failure progression and is associated with cardiovascular diseases 

[118]. Defects in BCAA transportation and metabolism is associated with autism [119]. 

Increased BCAA levels have been detected in early-stage pancreatic cancers [120]. 

 

1.3.2. Inborn errors of BCAA metabolism 

In Maple Syrup Urine Disease (MSUD), an inborn deficiency of the intermediate metabolite of 

BCAA catabolism branched-chain alpha-keto acid (BCKA) accumulates in different tissues, 



17 
 

predominantly in the brain due to a genetic defect in the branched-chain alpha-keto acid 

dehydrogenase complex (BCKDH) leading to oxidative stress and suppressed mitochondrial 

respiration [121]. BCAA share the first enzymatic steps in their degradation pathways, 

including a reversible transamination followed by an irreversible oxidative decarboxylation to 

coenzyme-A derivatives [122] and the defect in MSUD leads to significant elevation of all three 

BCAA and the respective ketoacids. Children with MSUD present with poor feeding and 

irritability, which if left undiagnosed and untreated, may progress to lethargy, coma and death 

[123].  

 

1.3.3. BCAA in T2D 
 

 Observational studies 
Back in the 1970s, Felig et al. reported associations between elevated BCAA levels and 

impaired insulin signaling in obese versus lean individuals and positively correlated with 

fasting insulin levels [124]. The sources of increased BCAA in circulation are unknown, but 

contributors include increased protein intake, high protein turnover or defects in degradation 

pathways. The interplay between plasma AA and glucose homeostasis is multiplex and the 

various effects on insulin secretion, glucose production peripheral glucose disposal have been 

extensively studied [125, 126]. The link between BCAA gained importance the 21st century by 

metabolomics methods that have confirmed a strong association between the HOMA-IR and 

circulating BCAA concentrations [127, 128]. In T2D, BCAA levels are currently considered a 

predictive marker for disease development [129, 130] and genomic variants that increased 

BCAA levels were associated with T2D in a Mendelian randomization study [131]. There has 

been evidence provided for decreased expression of BCAA catabolic enzymes in adipose tissue 

in obese humans and animals, which might be the explanation for the increased levels of 

circulating BCAA in these subjects [132, 133]. The close link between BCAA and insulin 

resistance is supported also by the substantial reduction in circulating BCAA levels in patients 

undergoing Roux-en-Y gastric bypass surgery, resulting in improved insulin sensitivity and 

glucose homeostasis [134]. Metabolomic analyses revealed that BCAA seem to be the most 

robust marker of insulin resistance in both plasma [135] and urine [136]. 

 

 Dietary interventions 
An area of controversial ongoing investigation is the key question whether BCAAs actively 

modulate or passively reflect insulin sensitivity [133, 137]. Interestingly, BCAA 
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supplementation alone is insufficient to induce insulin resistance in regular chow-fed rats, but 

contributes to insulin resistance in high-fat-fed rats [137]. In addition, BCAA-restricted diets 

were shown to improve glucose tolerance in animal models [138] [Table 3]. There was a 

distinctive metabolic ‘signature’ related to BCAA metabolism and obesity. In animals the 

supplementation of a high-fat diet with BCAA (HF/BCAA) managed to reduce the food intake 

and body weight, but causes insulin resistance to the same degree as of animals fed on a HF 

diet only but with higher body weight [128]. However, the inverse relationship between insulin 

sensitivity and BCAA doesn’t prove an effect-cause relationship, as elevated BCAA levels 

could be merely the consequence of insulin resistance. So far there has been no solid evidence 

provided by what mechanism elevated BCAA levels affect insulin resistance and T2D, but the 

role of adipose tissue has emerged [139]. In humans, there has been an inverse relationship 

registered between insulin sensitivity and BCAA [Table 4], it was not clear however how BCAA 

restriction affects metabolic health in humans and by which mechanisms. 
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 Mechanistic studies  
Two main mechanisms have been discussed, by which BCAAs may impair insulin action. 

One mechanism involves the mechanistic target of rapamycin (mTOR) serine-threonine protein 

kinase expressed in various tissues and involved in numerous cellular functions. It consists of 

two complexes mTORC1 and mTORC2 whose regulation is activated postprandially and 

initiates anabolism and energy storage [150]. mTORC1 is highly sensitive to AA signaling and 

integrates signals from BCAA and glucose. As in particular leucine is suggested to be the main 

activator by translocating proteins and assuring their binding to the regulatory –associated 

protein on mTOR Raptor [151]. Endogenous signals such as insulin and hormones also lead to 

mTORC1 activation by phosphorylation of the insulin receptor (IRS1) and thereby lowers 

insulin sensitivity by activating a negative feedback loop. Of note, animals with deletion of 

mitochondrial BCAA transaminase (BCATm) exhibit strongly increased circulating BCAA 

concentrations but are protected from high-fat-diet-induced obesity and insulin resistance [140], 

meaning BCAA-mediated effects such as mTOR activation alone are insufficient to produce 

insulin resistance. The mTOR coordinates protein synthesis, mitochondrial activity and 

proliferation [152]. In the cell, mitochondria act as the conductors of metabolic signals and 

energy homeostasis [153]. At the background of insulin resistance mitochondrial flexibility is 

impaired implying a perturbed mitochondrial function [154]. Impairment of mitochondrial 

function and/or morphological features of mitochondria are referred to as ‘mitochondrial 

dysfunction’ [155]. Moreover, the interaction between mitochondria and insulin sensitivity is 

bidirectional and varies depending on tissue [156]. Animal experiments and studies in cultivated 

cells provided evidence for a persistent activation of the mTOR pathway by BCAA, proving 

that these AA do not only ‘report’ insulin resistance but also contribute to the disease 

development [128]. Previous findings indicate a mechanism suggesting a contribution of BCAA 

metabolism to the development of insulin resistance and ultimately T2D [157, 158] . This 

assumption has been based on previous studies involving infusion of AA mixtures causing 

elevation of circulating AA levels to up to 7-fold and causing decreased glucose uptake while 

increasing hepatic gluconeogenesis [159]. A schematic overview of the mTOR insulin signaling 

pathway is shown in Figures 3A und 3B at the presence of different amounts of peripheral 

BCAA.  

In the second proposed mechanism for BCAA-induced insulin resistance, BCAAs themselves 

are not the culprit but rather their degradation products, propionyl CoA, succinyl CoA and/ or 

branched-chain ketoacids. Increased production of toxic mitochondrial BCAA catabolites as a 
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result of elevated BCAA turnover, could impair mitochondrial oxidative metabolism [137] and 

induce mitochondrial dysfunction.  
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A. 

 

B. 

 

Figure 3. Effects of branched-chain amino acids on the mTor pathway and insulin signaling. A. Under 
conditions of elevated circulating BCAA, mTORC1 is activated which leads to inhibition of insulin signaling. B. 
Under conditions of decreased circulating BCAA, mTORC1 activity is decreased and as a result insulin 
signaling is enhanced. BCAA+, high circulating BCAA levels, BCAA-, decreased circulating BCAA levels, GPR, 
G protein-coupled receptor, GLUT4, glucose-transporter type 4, SCFA, short-chain fatty acids, LCFA, long-
chain fatty acids, GPR 40, free fatty acid receptor 1, GPR 41/43, G-protein coupled receptor, IRS1, insulin 
receptor substrate 1, PI3K, phosphoinositide 3-kinases, Akt, protein kinase B, mTORC1, mechanistic target of 
rapamycin, S6K1, ribosomal protein s6 kinase, BCATm, mitochondrial branched-chain amino acid transaminase, 
BCKDH, branched-chain alpha-keto acid dehydrogenase complex , TCA, tricarboxylic acid cycle, TAG, 
triglycerides, p Thr, phosphorylated threonine. p Ser, phosphorylated serine.
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2. Aims and hypotheses 
 

Based on previous epidemiological studies reporting a strong association between elevated 

BCAA and insulin resistance, the present study (Clinicaltrials.gov registration number: 

NCT03261362 consistent with the Declaration of Helsinki and approved by the local ethics 

board of Heinrich Heine University, Düsseldorf, Germany registration number 4813R) aimed 

to examine the role of dietary BCAA intake for glucose metabolism in patients with overt T2D.  

 

This study therefore tested the following hypotheses that a BCAA-reduced diet 

i. improves whole body insulin sensitivity, 

ii. decreases insulin secretion and/or 

iii. alters human microbiome composition.  

To this end, we designed a randomized, placebo-controlled, double-blinded, cross-over study 

in 12 (8 male/4 female) patients with T2D. 



25 
 

 

3. Publication 
 

Karusheva Y, Kössler T, Strassburger K, Markgraf D, Jelenik T, Mastrototaro L, Simon MC, 

Zaharia OP, Bódis K, Baerenz F, Schmoll D, Burkart V, Müssig K, Szendroedi J, Roden M. 

Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin 

secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled 

cross-over trial. Am J Clin Nutr. 2019 110 (5): 1098-1107



26 
 

 

  



27 
 

 
  



28 
 

 
  



29 
 

 
  



30 
 

 
  



31 
 

 
  



32 
 

 
  



33 
 

 
  



34 
 

 
  



35 
 

 

 
 

 

 

 

 



36 
 

Supplemental Figure S1. Flow diagram of participants’ recruitment  
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4. Discussion  
 

This study contributes to elucidating the role of the BCAA, valine, leucine and isoleucine, 

during the development and progression of insulin resistance. We used a randomized placebo-

controlled double-blinded cross-over study to assess the effects of a diet low in BCAA in 

intensively phenotyped overweight patients with T2D. As main results, the study found that 

dietary reduction of BCAA intake for one week in persons with T2D (i) decreased postprandial 

insulin secretion, (ii) stimulated mitochondrial efficiency in adipose tissue and (iii) altered gut 

microbiome composition.  

 

4.1. Effects of reduced BCAA intake on insulin secretion 
 

In T2D, beta-cell dysfunction occurs before hyperglycemia develops [160] and supersedes the 

disease outbreak. High levels of glucose, lipids and inflammatory factors act as harmful agents 

to induce inadequate glucose sensing to stimulate insulin secretion. Glucose can have a dual 

effect as a beta-cell mass extender in order to satisfy higher insulin demands and together with 

AA are well known insulin secretory stimulators [107]. A reduced early insulin secretory 

response to oral glucose load, limited ability of the beta-cell to compensate for the degree of 

insulin resistance, decreased glucose-sensing resources of the beta-cell, and shifts to the right 

in the dose-response curves relating glucose and insulin secretion, are among the secretory 

defects which are indicative of a progressive insensitivity of the beta-cell to glucose [161]. 

To assess the acute effects of BCAA reduction on the beta-cell in the presented work, we applied 

a MMT with reduced BCAA content and evaluated the acute endocrine response of the pancreas 

to a less intense physiological AA stimulus. Of note, the lower insulin secretion rates did not 

result in higher blood glucose levels during the MMT implying improved insulin sensitivity. 

Indeed, postprandial insulin sensitivity as calculated from the oral glucose sensitivity index 

(OGIS) and the PREDIcted M-value (PREDIM index), which have been validated and correlate 

with clamp-derived measures of whole-body insulin sensitivity [162], were more than 20% 

higher than after BCAA+ diet. This phenomenon could have resulted from increased insulin-

mediated glucose disposal, which takes place predominantly in skeletal muscle under these 

conditions. Interestingly, data from HEC showed no improvement of skeletal muscle insulin 

sensitivity. This controversial finding could be explained by the different extent of reduction of 
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circulating BCAA levels. There was a postprandial reduction by 60% during MMT versus 13% 

under steady state conditions during HEC. There has been previous evidence, that 

hyperaminoacidemia could promote development of T2D through hyperinsulinemia, which 

ultimately leads to beta-cell exhaustion in the long term [130]. Alternatively, endogenous 

glucose production (EGP) could have been decreased under BCAA-depleted conditions due to 

lower substrate supply for hepatic gluconeogenesis [159]. The BCAA- diet for the duration of 

seven days improved postprandial glucose disposal in patients with T2D, which can be of high 

clinical significance. On the one side, decreasing postprandial endogenous insulin secretion 

could help to preserve beta-cell insulin reserve, thereby potentially reducing the patient’s 

dependency on exogenous insulin supplementation [163]. On the other hand, the administration 

of a complete set of AA leads to increased insulin levels and thereby to an improvement of 

glucose homeostasis [164]. In addition, it results in aminoacidemia which stimulates protein 

synthesis and inhibits proteolysis[164].  

 

4.2. Effects of reduced BCAA intake on insulin sensitivity 
 

This study also explored the effects of a modification of a single nutrient factor on the insulin 

sensitivity of peripheral tissues. Others have shown a quantitative relationship between the 

BCAA cluster and insulin resistance as assessed by HOMA-IR in Asian-Indian and Chinese 

males [149]. In our study BCAA modification did not affect insulin-stimulated peripheral 

glucose disposal levels under HEC conditions after normalization for the prevalent insulin 

levels during steady state of the HEC [165]. Interestingly, hepatic and adipose tissue insulin 

sensitivity were also comparable during HEC. The contrasting outcomes of whole-body insulin 

sensitivity from HEC and MMT may be due to different experimental conditions in the two 

setups. Whereas during HEC, constant levels of hormones and metabolites are present, MMT 

measurements are performed under dynamic conditions during a postprandial period.  

These aspects of the test conditions may result in different degrees of splanchnic versus 

peripheral insulinemia, which can markedly affect hepatic glucose turnover [166]. 

Nevertheless, the most obvious explanation for the difference between MMT and HEC resides 

in the different degree of BCAA reduction. The 60%-decrease in total serum BCAA levels 

during MMT associated with higher postprandial insulin sensitivity. In contrast, the minor 

reduction of circulating BCAA levels during HEC did not induce change of insulin sensitivity. 

Insulin decreases the appearance and increases the uptake of AA in the periphery [167]. 

Consequently, reduction of BCAA levels during steady state of HEC under hyperinsulinemia 
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was as expected lower than during MMT. It is conceivable that the dietary reduction of BCAA 

by 60% does not suffice to improve the insulin resistance of these patients with overt T2D. 

These data also suggest that the acute effect of BCAA reduction observed during MMT does 

not persist during the course of the dietary intervention. On the other hand, the lower 

insulinemia as observed during MMT would rather favor glycogenolysis and thereby 

stimulation of EGP [159]. However, no change of EGP was registered. Our results suggest that 

the improvement of insulin sensitivity is solely a short-term reaction but fails at achieving a 

permanent effect probably due to the magnitude of BCAA reduction. Thus, another possible 

reason for the lack of an effect on insulin sensitivity could be the short intervention period. But 

even a modulation of BCAA intake for one month failed to affect whole-body insulin sensitivity 

as assessed from HEC [168]. Since BCAA are essential and are omnipresent in commercially 

available foods, it was not possible to further reduce their dietary intake. BCAA degradation 

may also stimulate fatty acid synthesis and induce insulin resistance in skeletal muscle or white 

adipose tissue (WAT) via BCAA catabolic products or adipokines such as leptin and adiponectin 

or pro-inflammatory factors [132]. This will need to be addressed in future studies.   

 

4.3. Effects of reduced BCAA intake on insulin signaling 
 

Insulin is produced and secreted from the pancreatic beta-cells as a result of nutrient influx 

[169]. Both insulin resistance and beta-cell dysfunction influence each other and presumably 

synergistically exacerbate diabetes. At the background of systemic insulin resistance, insulin 

signaling within the glucose sensitive tissues is defective and therefore hyperglycemia 

perseveres [170]. Preserving beta-cell function and insulin signaling in beta-cells and in the 

glucose recipient tissues would maintain glucose homeostasis. In the presented work we 

assessed the activated mTORC1 complex. In addition, defective BCAA oxidative metabolism 

might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates but 

the presented work did not assess the metabolites of BCAA degradation.  

The tissue-specific contributions to improved postprandial insulin sensitivity, were examined 

in biopsies from skeletal muscle and adipose tissue taken at 4 h after the start of MMT. In 

skeletal muscle, there were no differences the mTOR/p70S6K signaling pathway between 

BCAA+ and BCAA- diets. This may be due to the relatively low levels of circulating insulin 

and BCAA at the end of the MMT and the weak stimulation of the insulin  signaling pathway 

[171]. Although skeletal muscle strongly relies on mitochondrial oxidative phosphorylation and 

decreased oxidative capacity can be major contributor to the development of insulin resistance 
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[172], there were also no differences in ex-vivo mitochondrial function. The effects of insulin 

however, are reduced in patients with T2D [173] and since insulin secretion was reduced, 

possible effects on insulin signaling might have been diminished. Of note, skeletal muscle 

insulin resistance has been considered to be one of the earliest signs in the pathogenesis of 

metabolic syndrome [174] and therefore might need a much longer period of exposure to 

reduced BCAA to improve. Despite significantly reduced BCAA levels in the periphery under 

all conditions – fasted, steady state of HEC and during MMT, whole body insulin sensitivity 

remained unchanged, which was supported by lacking changes of insulin signaling in skeletal 

muscle. 

Previous studies suggested that also adipose tissue can metabolize substantial amounts of 

BCAA [175] and may be a primary storage place of excess BCAA as lipids [176]. Indeed, the 

reduction of BCAA intake resulted in lower mTOR phosphorylation. Reduced AKT activity in 

WAT, however, might result from decreased peripheral insulinemia. Postprandial effects of 

BCAA reduced intake detected in WAT energy metabolism included an increased respiratory 

control ratio (RCR) and decreased oxidative capacity. A high RCR in adipose tissue indicates a 

higher efficiency of mitochondrial function under BCAA reduction. Furthermore, the 

hepatokine, fibroblast-growth factor 21 (FGF21), which is maximally elevated under conditions 

of reduced protein supply [178], could contribute to the interplay between BCAA and altered 

adipose tissue energy metabolism. As shown in previous studies AA deprivation [179, 180] 

increased plasma FGF21 concentrations after one week of the BCAA- diet. The insulin-

sensitizing hormone FGF21 is considered a metabolic signal of dietary protein restriction [181] 

and BCAA-restriction in particular [143] and a marker of improvement of metabolic health 

[138] by enhancing glucose uptake in adipose tissue. This possibly results in subsequent 

activation of the FGF21-AMPK pathway. In line, increased FGF21 levels after deprivation of 

the single BCAA leucine have been previously reported [183] and FGF21 is sensitive to nutrient 

deficiency and maximum serum levels of this hepatokine are found during low-protein high 

carbohydrate intake [184]. 

 

4.4. Effects of reduced BCAA intake on gut microbiome composition 
 

Several studies have shown that lean and overweight humans and rodents may present altered 

composition of their intestinal flora [185]. Previous publications describing gut microbiota 

transplantations after adherence of the donors to different diets showed that gut microbiota is 

easily modified by dietary [186], caloric intake [187] and age. The gut microbiota produces a 
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large number of enzymes which can extract energy from the host’s diet and deposits in fat stores 

[188], but can also be pre-determined at infancy age [189], so dietary composition is clearly an 

important factor in regulating microbiota composition. Metagenomic analyses of lean animals 

and humans showed that almost all the bacteria present in the distal gut belong to one of the 

bacterial phyla Bacteroidetes or Firmicutes [190, 191]. Most studies reported that in diet 

induced obesity mice (DIO) and in obese humans, Firmicutes prevail [192]. One week of 

reduced BCAA intake resulted in altering the gut microbiome composition, with increasing the 

Bacteroidetes and decreasing the Firmicutes phyla. In contrast, long-term protein-rich diet 

revealed a correlation with increased abundance of Bacteroidetes [193]. It is possible that 

environmental factors such as diet, lifestyle, medication use or hygiene have a high impact on 

the microbiota composition in obese [185]. It is however relevant that individual microbiome 

composition is dynamic and changes in age. In addition, short-term dietary changes have been 

proven to alter the human gut microbiome [194]. The altered composition of gut bacteria at the 

end of only one week of BCAA-reduced food intake might be the link to decreased insulin 

secretion [185]. Previous studies have shown that differences in glucose-stimulated insulin 

secretion between different mouse strains were reduced through microbiota transfer [195]. 

Dietary modifications may affect gut microbiome composition including bacterial species 

producing short-chain fatty acids (SCFA) such as acetate, propionate und butyrate, which 

contribute to the regulation of glucose homeostasis [196]. Precisely, acetate modulates insulin 

secretion [197] and increased levels of acetate and butyrate have been found in parts of the 

distal guts of obese mice which grants the microbiome an independent role in the developments 

of obesity [198]. In this study acetate and butyrate were not measured. High-fat diet modulates 

microbiota and induces modifications in the intestinal barrier associated with an increase in 

absorption and circulation of lipopolysaccharides and BCAA and a reduction in acetate, 

propionate, and butyrate and secondary bile acids [185]. The results of the present study provide 

reports changes in microbiota after only 1 week of reduced BCAA intake reach beyond 

investigations of microbiota composition in obese patients. In fact, this describes the time 

course of changes. As there might be a cause-effect relationship between the microbiota and 

insulin resistance from previous studies [198], these data support the role of BCAA as relative 

nutrients connected with impaired glucose tolerance and a modifiable tool in its prevention. 

The potential causal and personalized role of human microbiota in the development of 

metabolic disorders should be further elucidated.  

The present study benefits from the supervised dietary intervention, the comparison of meal-

induced versus effects during 2-4 weeks treatment and the comprehensive phenotyping of the 



44 
 

patients. Further strengths include the cross-over experimental design and the detailed 

assessment of a single beta-cell-function-component by mathematical modeling of MMT-

derived variables.  

Possible limitations of this study include the relatively short intervention period of only one 

week, which does not allow to draw conclusions on chronic effects of dietary BCAA reduction 

and the relatively small sample size. Furthermore, the study does not examine the dose-effect 

relationships. In addition, only patients with disease duration of <5 years taking oral 

hypoglycemic medication were included which does not allow to draw conclusions on the 

effects in longer disease duration and in insulin dependent T2D.  

 

5. Conclusions 
 

In conclusion, short-term dietary reduction of BCAA acutely decreases meal-induced insulin 

secretion, improves postprandial insulin sensitivity and mitochondrial efficiency of WAT in 

humans with T2D. Dietary BCAA reduction for one week does not affect whole-body insulin 

sensitivity, but increases circulating FGF21 levels and the abundance of intestinal 

Bacteroidetes. This proof-of-concept study can serve as the basis for future trials on dose-effect 

relationships between BCAA or metabolites and insulin secretion and sensitivity in T2D as well 

for designing novel lifestyle modifications aiming of prevention or treatment of T2D. Last but 

not least, the strategy of moderate reduction of BCAA intake should be examined in larger trials 

to evaluate its feasibility and efficacy in human metabolic diseases. In the future, the finding of 

this thesis contributes to opening new therapeutic avenues for treating obesity and insulin 

resistance and its comorbidities.
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